Teaching Based on Multiple Solutions: A Step toward Enhancing Mathematical Reasoning

Document Type : Research Paper

Authors

1 PhD. of Curriculum Studies, Tarbiat Modares University, Tehran, Iran

2 Assistant professor, Department of education, Tarbiat Modares University, Tehran, Iran.

3 Associate professor, Department of mathematics, Shahid Rajaee Teacher Training University, Tehran, Iran.

4 Associate professor, Department of education, Tarbiat Modares University, Tehran, Iran.

Abstract

The aim of this study is to examine the effectiveness of teaching based on multiple solutions in enhancing the skills of mathematical reasoning in high school students. The research sample includes 47 students in the experimental group and 54 students in the control group, all of whom were second grade students in public secondary schools for girls in Tehran in the academic year of 2015-2016 who study mathematics and science. The instrument of this study is a test-based on the Miyazaki (2000) classification of deductive and inductive reasoning. The research methodology is an action-research one that has enjoyed quasi-experimental research design. Data analysis shows that teaching based on multiple solutions can increase the reasoning skill meaningfully in the students of mathematics major but it has no significant effect on students of science. The qualitative analyses reveal the gap between arithmetic and algebraic thinking, weakness in the math discourse and lack of complete knowledge of students about the necessity of proof, standards of having a valid proof, the concept of variable and the language of algebra, to mention a few.

Keywords


ادیب حاج باقری، محسن؛ پرویزی، سرور؛ صلصالی، مهوش(1390). روش های تحقیق کیفی. تهران:  نشر و تبلیغ بشری.
برنامه درسی ملی جمهوری اسلامی ایران (اسفند 1391). شورای عالی آموزش و پرورش. وزارت آموزش و پرورش. سازمان پژوهش و برنامه ریزی آموزشی.
حاجی‌حسینی‌نژاد، غلامرضا؛ بالغی‌زاده، سوسن (1389). «تأثیر آموزش مبتنی بر (تدریس برای فهمیدن) بر برنامه‌ی درسی تجربه شده درس تاریخ هنر»، فصل­نامة مطالعات برنامه درسی ایران، شمارة 17.صص 55-39
ریحانی، ابراهیم؛ حمیدی، فریده ؛ کلاهدوز، فهیمه (1391). «بررسی درک و فهم دانش آموزان سال دوم متوسطه از استدلال و اثبات ریاضی»،  فصل­نامة مطالعات برنامه درسی ایران، سال 6، شماره 24. صص182-157.
سیف، علی­اکبر(1383). روان­شناسی پرورشی (روان­شناسی یادگیری و آموزش). ویرایش ششم، تهران: آگاه.
شجاعی، کورش(1391). «بررسی تعمیم و توجیه دانش­آموزان سال اول متوسطه در باب الگوهای عددی و هندسی خطی»، پایان­نامة کارشناسی ارشد آموزش ریاضی، دانشگاه تربیت دبیر شهید رجایی.
صدیقی، مریم(1387). بررسی مهارت جبری در دانش­آموزان دختر سال اول متوسطه، پایان­نامة کارشناسی ارشد، رشتة آموزش ریاضی، دانشگاه تربیت دبیر شهید رجایی.
غلام­آزاد، سهیلا، [بی­تا]، «دوباره­نگری به برنامة جبر دبیرستانی»، آموزش ریاضی، سال هفدهم، شماره 63. صص 12– 4.
 فردانش، هاشم،(1383). طبقه­بندی الگوهای طراحی سازنده­گرا بر اساس رویکردهای یادگیری و تدریس. مشهد: مطالعات تربیتی و  روان­شناسی دانشگاه فردوسی مشهد.
کریمی، عبدالعظیم. بخشعلی­زاده، شهرناز و کبیری، مسعود (1391).گزارش اجمالی از مهم­ترین نتایج تیمز و پرلز 2011 و مقایسه­ی آن با عملکرد دانش­آموزان ایران در دوره­های قبل، سازمان پژوهش و برنامه­ریزی آموزشی، پژوهشگاه مطالعات آموزش و پرورش، مرکز مطالعات تیمز و پرلز.
کلاهدوز، فهیمه(1390)، «بررسی درک و فهم دانش­آموزان سال دوم متوسطه از استدلال و اثبات ریاضی»، پایان­نامة کارشناسی ارشد آموزش ریاضی، دانشگاه تربیت دبیر شهید رجایی.
کمیتة مطالعة یادگیری ریاضی (2001). کمک کنیم کودکان ریاضی یاد بگیرند. ترجمۀ بهزاد، مهدی و گویا، زهرا(1387). تهران: فاطمی.
ملکی، حسن؛ حبیبی‌پور، مجید (1385). «پرورش تفکر انتقادی هدف اساسی تعلیم و تربیت»، فصل­نامه نو‌آوری‌های آموزشی، شمارة19:108-93.
مهرمحمدی، محمود و عابدی، لطفعلی(1380). «ماهیت تدریس و ابعاد زیبا شناختی­آن»، فصل­نامة مدرس، دورة 5، شمارة 3، پاییز. صص57-43
Amit, M., & Neria, D. (2008). “Rising to the challenge”: using generalization in pattern problems to unearth the algebraic skills of talented pre-algebra students. ZDM, 40(1), 111-129.
Ball, D. L. & Bass, H. (2003). Making mathematics reasonable in school. In J. Kilpatrick, W. G. Martin, & D. Schifter (Eds.), A research companion to principles and standards for school mathematics (pp. 27–44). Reston, VA: National Council of Teachers of Mathematics.
Bessant, K. C. (1995). Factors associated with types of mathematics anxiety in college studentsJournal for Research in Mathematics Education, 327-345.
Becker, J. R., & Rivera, F. D. (2008). Generalization in algebra: the foundation of algebraic thinking and reasoning across the grades. ZDM, 40(1), 1-1.
Brodie, Karin (2010). Teaching Mathematical Reasoning in Secondary School Classrooms, New York: springer, Retrieved May 10, 2011 from http://www.springer.com.
Carraher, D. W., Martinez, M. V., & Schliemann, A. D. (2008). Early algebra and mathematical generalization. ZDM, 40(1), 3-22.
Chin, E-T. & Lin, F-L. (2009). A Comparative Study on Junior High School Students’ Proof Conceptions in Algebra between Taiwan and the UK.  Journal of Mathematics Education, 2(2), 52-67.
Cooper, T. J., & Warren, E. (2008). The effect of different representations on Years 3 to 5 students’ ability to generalise. ZDM, 40(1), 23-37.
Dee Vanspronsen, Hillary  (2008). Proof processes of novice mathematics proof writers, Unpuplished doctoral dissertation, university of Montana,USA. Retrieved from ProQuest Digital Dissertations.
Eisner, w. Elliot, 1994, The Educational Imagination, 2nd (ed.), New York: Macmillan.
Harel, G., & Sowder, L. (1998). Students' proofs schemes: Results from exploratory studies. In A. Schenfeld, J. Kaput, & E. Dubinsky (Eds.), Research in Colligate Mathematics Education III (pg. 234-283). Providence, RI: American Mathematical Society
Healy, L. & Hoyles, C. (2000). A study of proof conceptions in algebra. Journal for Research in Mathematics Education, 31(4), 396-428.
Henningsen, M., & Stein, M. K. (1997). Mathematical tasks and student cognition: Classroom-based factors that support and inhibit high-level mathematical thinking and reasoning. Journal for Research in Mathematics Education, 524-549.
Jurdak, M. E., & El Mouhayar, R. R. (2014). Trends in the development of student level of reasoning in pattern generalization tasks across grade level. Educational Studies in Mathematics, 85(1), 75-92.
Leighton, J. P. (2003). Defining and Describing Reasoning. In J. P. Leighton & R. J. Sternberg (Eds.), The  Nature of Reasoning. New York, NY: Cambridge.
Leikin, Roza. 2011, Multiple-solution tasks: from a teacher education course to teacher practice, ZDM Mathematics Education, 43:993–1006
Levav-Waynberg, Anet.; Leikin, Roza., 2010, multiple solutions for a problem: a tool for evaluation of mathematical thinking in geometry, university of Haifa- Israel.
Levav-Waynberg, Anet; Leikin, Roza; 2012 , The role of multiple solution tasks in developing knowledge and creativity in geometry, The Journal of Mathematical Behavior,
Lynch, K., Star, J.R, 2013, Views of struggling students on instruction incorporating multiple strategies in Algebra I: An exploratory study, Journal for Research in Mathematics Education.
Mansi , K.E. (2003).Reasoning and proof in mathematics Education: A Review of the Litereture. A Theses submitted to the graduate faculty of north Carolina State university in partial fulfillment of the degree of master of science.
Mason J.; Burton L.; Stacey K., 2010, Thinking mathematically, Second edition,
Miyazaki, M. (2000). Levels of proof in lower secondary school mathematics. Educational Studies in Mathematics, 41(1), 47-68.
National Council of Teachers of Mathematics (NCTM), 2000, Principles and Standards for School Mathematics.
National Governors Association Center for Best Practices & Council of Chief State School Officers. (2010). Common core state standards for mathematics.
National Research Council (NRC), 2001, Helping Children Learn Mathematics, Mathematics Learning Study Committee.
Newark, Jenifa Cai, 2002, Assessing and Understanding U.S. and Chinese Students’ Mathematical Thinking: Some Insights from Cross-National Studies,ZDM 2002, Vol. 34 (6).
Paddack, Megan  (2009). The process of making meaning: The interplay between teachers knowledge of mathematical proofs and their classroom practices. Unpuplished doctoral dissertation, university of new Hampshire, United States. Retrieved from ProQuest Digital Dissertations.
Pedemonte, B., & Buchbinder, O. (2011). Examining the role of examples in proving processes through a cognitive lens: the case of triangular numbers. ZDM, 43(2), 257-267.
Recio, A. M., & Godino, J. D. (2001). Institutional and personal meanings of mathematical proof. Educational Studies in Mathematics, 48, 83-99.
Reid, D. A., & Knipping, C. (2010). Proof in mathematics education. Reserach, learning and teaching. Rotterdam: Sense Publisher.
Rivera, F. D. (2010). Visual templates in pattern generalization activity. Educational Studies in Mathematics, 73(3), 297-328.
Rivera, F. D., & Becker, J. R. (2008). Middle school children’s cognitive perceptions of constructive and deconstructive generalizations involving linear figural patterns. ZDM, 40(1), 65-82.
Schukajlow, S., & Krug, A. (2014). Do multiple solutions matter? Prompting multiple solutions, interest, competence, and autonomy. Journal for Research in Mathematics Education, 45(4), 497-533. Stacey, Kay. (2006), What is mathematical thinking and why is it important?
Star, J. R. & Rittle, Johnson, B. (2008). Flexibility in problem solving: The case of equation solving. Learning and Instruction, 18, 565-579.
Stylianides, Andreas J. (2005).proof and proving in school mathematics instruction: making the elementary grades part of the equation. Unpuplished doctoral dissertation, university of Michigan, Ann Arbor.
Stylianides, Andreas J. (2007).Proof and proving in school mathematics.Journal for research in mathematics education, 38(3), 289-321.
Stylianides, Gabriel J. & Stylianides, Andreas J. (2008). Proof in School Mathematics: Insights from Psychological Research into Students’ Ability for Deductive Reasoning, Mathematical Thinking and Learning, 10, 103-133.
Tanisli, D., & Ozdas, A. (2009). The Strategies of Using the Generalizing Patterns of the Primary School 5th Grade Students. Educational Sciences: Theory and Practice, 9(3), 1485-1497.
Varghese, Thomas, (2007). Student teachers conception of mathematical proof. Unpuplished doctoral dissertation, University of Alberta, Canada.
Vogel, R. (2005). Patterns—a fundamental idea of mathematical thinking and learning. ZDM, 37(5), 445-449.
Warner, L. B., Schorr, R. Y., & Davis, G. E. (2009). Flexible use of symbolic tools for problem solving, generalization, and explanation. ZDM, 41(5), 663-679.
Weber, K. (2004). A framework for describing the processes that undergraduates use to construct proofs. Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education, 4, 425-432.
Weber, K. (2005). Problem-solving, proving, and learning: The relationship between problem-solving processes and learning opportunities in the activity of proof construction. Journal of Mathematical Behavior, 24, 351-360.
Wu, 1996, The Role of Euclidean Geometry in High School,  Journal of  Mathematical Behavior, 15, 221-237
Yeşildere, S., & Akkoç, H. (2010). Algebraic generalization strategies of number patterns used by pre-service elementary mathematics teachers. Procedia-Social and Behavioral Sciences, 2(2), 1142-1147.
Zapatera, A., & Callejo, M. L. (2013). Preservice Primary Teachers’s Noticing of Students’ Generalization Process.
Zazkis, R., Liljedahl, P., & Chernoff, E. J. (2008). The role of examples in forming and refuting generalizations. ZDM, 40(1), 131-141.