Designing and Validating the Model of Visual-Spatial Competencies of Elementary School Students in Lessons Specific for Virtual Education

Document Type : Research Paper

Authors

1 Associate Professor, Department of Educational Administration and planning, Faculty of Education Sciences and Psychology, Shiraz University, Shiraz, Iran

2 Ph.D. in Curriculum Development, Shiraz University, Shiraz, Iran

3 M.Sc. in Curriculum Development, Shiraz University, Shiraz, Iran

4 Ph.D. Sudent in Educational Administration, Shiraz University, Shiraz, Iran

5 M.Sc. in General Psychology, Firoozabad Islamic Azad University, Firoozabad, Iran

Abstract

The aim of the present study was to design and validate the model of visual-spatial competencies of students in mathematics lessons for virtual education. This research was one of the mixed method researches of consecutive exploratory type and classification model which was performed in two qualitative and quantitative stages. The qualitative part was transformed using the Meta Synthesis method and performed in six stages of Sandloski and Barroso (2007). The students' visual-spatial competence model in mathematics was designed in the form of two competencies related to students and teachers. Afterward the quantitative section was defined to validate the model. The quantitative part was performed using the descriptive survey method and the researcher-made scale. The statistical population of this section was primary school teachers, and the relevant tools were distributed among 65 primary school teachers in Shiraz. In order to determine the validity of the scale, the content validity method and the calculation of the content validity and content validity ratios were used. The reliability of the instrument was also calculated by the internal consistency method. Quantitative data were analyzed using the confirmatory factor analysis method. Based on findings, the visual-spatial competencies of elementary school students were classified in two main themes of "Student-related competencies" include seven sub-themes: "Cognitive skills", "Mental function", "Learning power", "Making space of mind", "Perception" "Template", "Visual memory", "Simulation" and "Teacher-related competencies" include three sub-themes: "Appropriate content", "Teaching skills" and "Educational design", which are valid.

Keywords


اصلانی، طاهر، آقاجانی، سیف‌الله، رضایی شریف، علی، و پرزور، پرویز (1395). اثربخشی روش تلفیقی آموزش شناختی-رفتاری والدمحور کوتاه‌مدت و تقویت دقت در درمان نارساخوانی و بهبود عملکرد فضایی دانش‌آموزان نارساخوان. ناتوانی‌های یادگیری، 6(1)، 59-40.
اصلی‌آزاد، مسلم، عابدی، احمد، و یارمحمدیان، احمد (1393). اثربخشی آموزش درک روابط فضایی بر عملکرد ریاضی دانش‌آموزان پسر با ناتوانی یادگیری ریاضی. افراد استثنایی، 5(17)، 129-112.
پورمحمدرضای تجریشی، معصومه، پهلوان‌نشان، سحر، و گلکار، فائزه (1398). اثربخشی آموزش آگاهی واج‌شناختی بر حافظة فعال دیداری فضایی دانش‌آموزان با اختلال بیان نوشتاری. روان‌شناسی تحولی، 15(60)، 366-355.
حاجی حسین‌نژاد، غلامرضا (1381). نظریة هوش‌های چندگانة گاردنر و کاربرد آن در آموزش. تهران: انتشارات جهاد دانشگاهی واحد تربیت معلم تهران.
سیف، علی‌اکبر (1393). روان‌شناسی پرورشی نوین: روا‌ن‌شناسی یادگیری و آموزش. ویرایش هفتم، چاپ 55، تهران: انتشارات دوران.
شاه‌بیگی، فرزانه، و نظری، سمانه (1390). آموزش مجازی: مزایا و محدودیت‌ها. فصل‌نامة مرکز مطالعات و توسعة آموزش علوم پژشکی دانشگاه شهید صدوقی یزد، 6(1)، 54-47.
شمیلی، فرنوش، و کاتب، فاطمه (1396). تأثیر آموزش هنر بر حافظة دیداری افراد. پژوهش در نظام های آموزشی، 36، 59-42.
علیاری، شهلا، برومند، سهیلا، و عالیخانی، شیرین (1388). راهنمای عملی طراحی برنامة آموزشی مبتنی بر وب. مجلة دانشکدة پرستاری ارتش جمهوری اسلامی ایران، 9(1)، 37-30.
کاظمی مهرآبادی، الهام (1397). تأثیر آموزش ادراک فضایی دیداری بر میزان علاقه به درس، یادگیری و یادداری مباحث هندسة ریاضی پایة چهارم ابتدایی دانش‌آموزان دختر شهر اراک در سال 97-96. پایان‌نامة کارشناسی ارشد، دانشگاه اراک، دانشکدة علوم انسانی گروه علوم تربیتی گرایش تکنولوژی آموزشی.
مخبری، عادل (1390). روان‌شناسی تربیتی. تهران: انتشارات پوران پژوهش.
نیازآذری، کیومرث، بهنام‌فر، رضا، و اندی، صدیقه (1391). تأثیر به‌کارگیری فن آوری اطلاعات و ارتباطات در یادگیری دانش‌آموزان دورة ابتدایی. فن‌آوری اطلاعات و ارتباطات در علوم تربیتی، 3، 43-31.
Aini, A. N., Mukhlis, M., Annizar, A. M., Jakaria, M. H. D., & Septiadi, D. D. (2020). Creative thinking level of visual-spatial students on geometry HOTS problems. The International Conference on Physics and Mathematics for Biological Science 2019, 31 August – 1 September 2019, Jember, Indonesia.
Ainsworth, S. E., Stieff, M., Desutter, D., Tytler, R., Prain, V., Panagiotopoulos, D., … Puntambekar, S. (2016). Exploring the value of drawing in learning and assessment. Proceedings of international conference of the learning sciences, ICLS, 2, 1082–1089.
Arcavi, A. (2003). The role of visual representations in the learning of mathematics. Educational studies in mathematics, 52(3), 215-241.
Armstrong, T. (1999). 7 kinds of smart: Identifying and developing your multiple intelligences. Plume Books.
Battista, M. T. (1990). Spatial visualization and gender differences in high school geometry. Research in Mathematics Education, 47-60.
Battista, M. T., Wheatley, G. H., & Talsma, G. (1982). The importance of spatial visualization and cognitive development for geometry learning in preservice elementary teachers. Research in Mathematics Education, 332-340.
Bergey, B. W., Deacon, S. H., & Parrila, R. K. (2017). Metacognitive reading and study strategies and academic achievement of university students with and without a history of reading difficulties. Learning Disabilities, 50(1), 81-94.
Burte, H., Gardony, A. L., Hutton, A., & Taylor, H. A. (2017). Think 3d: Improving mathematics learning through embodied spatial training. Cognitive Research: Principles and Implications, 2(1), 13-20.
Carbonell-Carrera, C., & Saorin, J. L. (2017). Virtual learning environments to enhance spatial orientation. EURASIA Journal of Mathematics, Science and Technology Education, 14(3), 709-719.
Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies. New York, NY: Cambridge University Press.
Chen, Y. C., Yang, F. Y., & Chang, C. C. (2020). Conceptualizing spatial abilities and their relation to science learning from a cognitive perspective. Journal of Baltic Science Education, 19(1), 50-63.
Creswell, J. W., & Plano Clark, V. L. (2011). Designing and conducting mixed methods research (Second Ed.). London: SAGE Publications, Inc.
Critten, V., Campbell, E., Farran, E., & Messer, D. (2018). Visual perception, visual-spatial cognition and mathematics: Associations and predictions in children with cerebral palsy. Research in Developmental Disabilities, 80, 180-191.
Dewi P. S., Edi S., & Edy, S. (2018). An analysis of spatial ability and self-efficacy of students in cooperative learning by using jigsaw at smas muhammadiyah 8 kisaran. American Journal of Educational Research. 6(8),1238-1244.
Dixon, J. P. (1983). The spatial child. Springfield, IL: C. C. Thomas.
Ellis, K., Fisher, J., Willoughby, L., & Barca, J. C. (2015). A design science exploration of a visual-spatial learning system with feedback. Australasian Conference on Information Systems, 2015, Adelaide.
Feng, Y., Cheng, Y., Wang, G., Xu, X., Han, H., & Wu, R. (2020). Radar Emitter Identification under Transfer Learning and Online Learning. Information, 11(1), 15-20.
Gardner, H. (1993). Multiple intelligences: The theory in practice. New York, NY: Basic Books.
Geary, D. C. (2011). Cognitive predictors of achievement growth in mathematics: A 5-year longitudinal study. Developmental psychology, 47(6), 15-39.
Golon, A. S. (2004). Raising topsy-turvy kids: Successfully parenting your visual-spatial child. DeLeon Pub.
Greenburg, J. E., Carlson, A. G., Kim, H., Curby, T. W., & Winsler, A. (2020). Early visual-spatial integration skills predict elementary school achievement among low-income, ethnically diverse children. Early Education and Development, 31(2), 234-252.
Gregory, G. H. (Ed.). (2005). Differentiating instruction with style: Aligning teacher and learner intelligences for maximum achievement. Corwin Press.
Gui, Y., & Zeng, G. (2020). Joint learning of visual and spatial features for edit propagation from a single image. The Visual Computer, 36(3), 469-482.
Hindal, H. S. (2014). Visual-spatial learning: A characteristic of gifted students. European Scientific Journal, 10(13), 331- 345.
Ike, C. G., & Anderson, N. (2018). A proposal for teaching bioethics in high schools using appropriate visual education tools. Philosophy, Ethics, and Humanities in Medicine, 13(1), 11-14.
Jarrett, D., & Stepanek, J. (1997). Science and mathematics for all students. It’s Just Good Teaching. Northwest Regional Educational Laboratory.
Koparan, T., & Yılmaz, G. K. (2015). Using dynamic geometry software for the intersection surfaces. Education and Training Studies, 3(5), 23 -38
Kozhevnikov, M., & Garcia, A. (2011). Visual-spatial learning and training in collaborative design in virtual environments. In Collaborative design in virtual environments (pp. 17-26). Springer, Dordrecht.
Krutetskii, V. A. (1976). The psychology of mathematical abilities in schoolchildren. Chicago: University of Chicago Press.
Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. Beverly Hills, CA: Sage.
Liu, S., & Liu, D. (2020). Visual-spatial Attention and Reading Achievement in Hong Kong Chinese Children: Evidence from a One-year Longitudinal Study. Scientific Studies of Reading, 24(3), 214-228.
Lowrie, T., Logan, T., & Hegarty, M. (2019). The influence of spatial visualization training on students’ Spatial Reasoning and Mathematics Performance. Journal of Cognition and Development, 20(5), 729-751.
Lowrie, T., Resnick, I., Harris, D., & Logan, T. (2020). In search of the mechanisms that enable transfer from spatial reasoning to mathematics understanding. Mathematics Education Research Journal, 1-14.
Mann, R. L. (2006). Effective teaching strategies for gifted/learning-disabled students with spatial strengths. Secondary Gifted Education, 17(2), 112-121.
Martín-Gutiérrez, J., Contero, M., & Alcañiz, M. (2015). Augmented reality to training spatial skills. Procedia Computer Science, 77, 33-39.
McGee, M. G. (1979). Human spatial abilities: Psychometric studies and environmental, genetic, hormonal, and neurological influences. Psychological Bulletin, 86, 889-918.
Mealor, A. D., & Dienes, Z. (2013). The speed of metacognition: Taking time to get to know one’s structural knowledge. Consciousness and Cognition, 22(1), 123-136.
Olson, M. B. (1984). What do you mean by spatial? Roeper Review, 6(4), 240-244.
Pascarella, E. T., & Terenzini, P. T. (2005). How college affects students: A third decade of research. Vol.2, Jossey-Bass, An Imprint of Wiley. 10475 Crosspoint Blvd, Indianapolis, IN 46256.
Russomanno, D., & Goodwin, J. (2007). Animation and visualization tools: From undergraduate projects to pedagogical aids. STEM Education, 8(1), 88- 92.
Sanabria, O. B., Chavez, M. P., & Gómez Zermeño, M. (2018). Virtual educational model for remote communities in Chocó, Colombia. International Journal of Education and Development using Information and Communication Technology, 12(2), 195-205.
Sandelowski, M., & Barroso, J. (2006). Handbook for synthesizing qualitative research. Springer Publishing Company.
Sanger, M. J., & Greenbowe, T. J. (2000). Addressing student misconceptions concerning electron flow in aqueous solutions with instruction including computer animations and conceptual change strategies. International Journal of Science Education, 22(5), 521-537.
Sawyer, R. K. (2006). The Cambridge handbook of the learning sciences. ed. RK Sawyer.
Secora, K., & Emmorey, K. (2020). Visual-Spatial Perspective-Taking in Spatial Scenes and in American Sign Language. Deaf Studies and Deaf Education, 12(3), 155- 157.
Sherman, J. A. (1979). Predicting mathematical performance in high school girls and boys. Educational Psychology, 71, 242-249.
Silverman, L. K. (2003). The power of images: Visual-spatial learners. Gifted Education Communicator34(1), 14-17.
Silverman, L. K. (2005). Upside-down brilliance: The visual-spatial learner. Paper presented at the Queensland Association for Gifted and Talented Children Annual Conference. Brisbane, Qld.
Sisman, B., Kucuk, S., & Yaman, Y. (2020). The Effects of Robotics Training on Children’s Spatial Ability and Attitude Toward STEM. International Journal of Social Robotics, 1-11.
Smith, M. (1964). Spatial ability: Its educational and social significance. London: University of London Press.
Tosto, M. G., Hanscombe, K. B., Haworth, C. M., Davis, O. S., Petrill, S. A., Dale, P. S., ... & Kovas, Y. (2014). Why do spatial abilities predict mathematical performance? Developmental science, 17(3), 462-470.
Usiskin, Z. (1987). Resolving the continuing dilemmas in school geometry. In M. M. Lindquist & A. P. Shulte (Eds.), Learning and teaching geometry K-12 (pp. 17-31). Reston, VA: National Council of Teachers of Mathematics.
Van de Weijer-Bergsma, E., Kroesbergen, E. H., & Van Luit, J. E. (2015). Verbal and visual-spatial working memory and mathematical ability in different domains throughout primary school. Memory & cognition, 43(3), 367-378.
Van de Weijer-Bergsma, E., Kroesbergen, E. H., Jolani, S., & Van Luit, J. E. (2016). The Monkey game: A computerized verbal working memory task for self-reliant administration in primary school children. Behavior research methods, 48(2), 756-771.
Wang, L. (2020). Mediation relationships among gender, spatial ability, math anxiety, and math achievement. Educational Psychology Review, 32(1), 1-15.
Weckbacher, L. M. (2007). The role of visualization in geometric problem solving. University of California, Santa
Xie, F., Zhang, L., Chen, X., & Xin, Z. (2019). Is spatial ability related to mathematical ability: A meta-analysis.
Yang, X., Chung, K. K. H., & McBride, C. (2019). Longitudinal contributions of executive functioning and visual-spatial skills to mathematics learning in young Chinese children. Educational Psychology, 39(5), 678-704.
Yarmohammadian, A. (2014). The relationship between spatial awareness and mathematic disorders in elementary school students with learning mathematic disorder.
Young, C. J., Levine, S. C., & Mix, K. S. (2018). The connection between spatial and mathematical ability across development. Frontiers in Psychology, 9(755), 1-7.